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the integral Then we find 

/

a /lay12 rab f 

dxe^iat+x2)1!*, / = =v ) / dyey(ab~y)1/2=:[ 
where a<£\, b —> oo. Let y=bx, and (a+x)1/2 = (2a)112. where in the last step we let ab—> oo. 
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We investigate the convergence of the many-fermion perturbation series and show, for the case of the 
square-well potential, that it is a divergent series. We bound the rate of divergence and show that, by using 
appropriate summation procedures, it may be summed to the physically correct sum, provided the density 
is low enough. 

T 
1. INTRODUCTION 

HERE is a widely held view1 that the many-
fermion perturbation theory as currently for­

mulated is ^sufficiently established on theoretical 
grounds." The purpose of this paper is to question that 
view. For the sake of explicitness we will consider a 
system of spinless fermions interacting via a square-
well potential. We first establish, in the second section, 
that the radius of convergence for the ground-state 
energy of the A -̂body system (at fixed density) tends 
to zero as N tends to infinity at least as fast as N~~y, 
where y is any positive number less than §. This result 
implies that the perturbation series is, at best, an 
asymptotic one. 

In the third section we consider the complete pertur­
bation series and bound every order. We find that it 
diverges no faster than a geometrical series times (n]), 
where n is the order of the term. We also give an argu­
ment based on the BCS theory of superconductivity 
that, in general, the series diverges at least this fast. In 
the final section we consider the problem of assigning 
a meaning to the sum of the series and show, provided 
the density is low enough (small compared to the jam­
ming density for hard spheres), that it may be summed, 
even though divergent, to the lim^^oo^iv(F), where 
EN(V) is the energy per particle for a potential of real, 
positive strength V in the Af-body problem. We advance 
some arguments to support the conjecture that the 
methods we present give the physically correct sum in 
general when the physical system has no long-range 
order. 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

1 See, for instance, H. A. Bethe, B. H. Brandow, and A. G. 
Petschek, Phys. Rev. 129, 225 (1963). 

2. THE DIVERGENCE OF THE PERTURBATION 
SERIES 

In this section we shall establish that the many-body 
perturbation series is, at best, an asymptotic series and 
not a convergent one, and estimate approximately the 
angular region in which it is asymptotic. The first 
important point is, that as the number of particles N 
tends to infinity, each order in the Rayleigh-Schrodinger 
perturbation series for E/N, energy per particle, tends 
to a finite limit. This was first asserted by Brueckner2 

and later proved by Goldstone.3 The second important 
point, which we will discuss below, is that in the limit 
as N tends to infinity there occur branch points in the 
energy which move to the origin of the complex poten­
tial V plane. 

The analysis of Cooper4 for a simple model without 
kinetic energy may not be germane as it seems that he 
proves that the energy expansion has zero radius (or 
infinite in special cases) of convergence even for two 
particles in a box. This result is not appropriate to 
ordinary perturbation theory with a kinetic energy 
present. 

In order to investigate the many-body problem with a 
square-well interaction, we shall first investigate the 
problem of a particle in a spherical box with a square-
well potential of strength V near the origin. The 
potential is 

V, 0<r<a, 
0, a<r<a+b, 

+ 00, a+b<r. 
(2.1) 

2 K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344 
(1955). See also H. A. Bethe, ibid. 103,1353 (1956) for an extensive 
list of references. 

3 J. Goldstone,'Proc. Roy. Soc. (London) A239, 267 (1957). 
4 L. N. Cooper, Phys. Rev. 122, 1021 (1961). 



1870 G E O R G E A . B A K E R , J R . 

a«b J 

IQi -
^ b 

- 5i 

b - 0 

1 1 
- 5 0 5 

FIG. 1. Trajectory of the branch point in the ground-state energy 
for one particle in a box. 

By solving Schrodinger's equation5 we may easily 
establish that the energy of the lowest state, as a func­
tion of the potential strength, is given by the solution of 

tanh! 
2m \1 / 2 1 /r/2m \^2 n • /2m 

K 2m \ 1 / 2 l /r/2m \1 / 2 n 

**) l\/l{vE) "\- (22) 

When 7 = 0 , it follows readily from the trigonometric 
identity tana+tan(7r—a) = 0 that the ground-state 
energy is 

£(0) = 
2m (a+b)2 

(2.3) 

As F—>°°, the left-hand side of (2.2) tends to zero, 
the wave function is compressed into the region 
a<r<a+b, and the energy tends to 

fl2 IT2 

l i m £ ( F ) = . 
~ ' 2m b2 F-H-oo 

(2.4) 

In fact, if | (V—E)1/2a\ is large and we are not near the 
poles of the left-hand side of (2.2), then we see by 
approximating the right-hand side of (2.2) for tarn; near 
x=7r by (x—ir) that E(V) is approximately given by 
(2.4) for all V in the neighborhood of infinity, except 
near V real and negative. This statement is true when 
we start V toward infinity along the positive real axis. 

6 See, for instance, L. I. Scruff, Quantum Mechanics (McGraw-
Hill Book Company, Inc., New York, 1949), Sec. 15. 

When V—> — <*>, the right-hand side of (2.2) tends 
to zero, the wave function falls into the region 0<r<a, 
and the energy tends to 

¥ 7T2 

l i m [ £ ( F ) - F ] = . 
F-*-°° 2m a2 

(2.5) 

Again approximating tanhx near x=iw by (x— iir) we 
find (2.5) valid for large V not near V real and positive. 

The difference of these two results for, say, V large 
and imaginary implies the existence of at least one 
complex conjugate pair of branch points. We may 
locate them as follows: I t is well known that the branch 
points of E(V) occur where (dV/dE) = 0.6 If we define 

/2m 
ii2=l—(y-E) 

(2m 

)
l /2 

a, 

/2m x1 '2 (2.6) 

then the equation for the critical points of E(V) becomes 

• /^cosH/1 '2) • 

.2/1/2-sin(2/1^2). 

•221/2-sinh(221/2)-

. s 3 / 2 coshV / 2 ) >©'• (2.7) 

subject to (2.2). If (b/a)^>l, then the solution is 
approximately given by 

2/1/2-sin(2*1/2) = 0, 

cosh(21'2) = 0, 
(2.8) 

as 
[cos2(/1/2)]/[cosh2(s1/2)]oc (b/a)

2, (b/a)»l. (2.9) 

Hence, in this limit we have the branch points at6 

approximately 

V=-
W J-

2ma2L 
i^+[-) (12.1372±10.3789i) (2.10) 

For the case a=b, E(V) satisfies, by symmetry, the 
relation 

E(V)-E(-V)=V, (2.11) 

and hence we expect the branch point to be on the 
imaginary axis. For V pure imaginary, (2.11) implies 
t= — 2* and (2.7) reduces to 

r22
1/2-sinh(2s1/2)-

Re 
L s ^ c o s h V ' 2 ) J 

= 0. (2.12) 

We compute that the branch points are at the points 

V=(fi2/2ma2)(±9.2i). 
(2.13) 

6 See, for instance, H. Kober, Dictionary of Conformal Repre­
sentations (Dover Publications, Inc., New York, 1957), pp. xiii 
and 103. 
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As b continues to decrease until b/a<£l, we find 
reciprocally to (2.8) above that the branch points occur 
for 

2s1/2-sinh(221/2) = 0 , 

cos(^2) = 0 , 

which implies that, approximately, 

s=-12.1372d=10.3789i, *=(£TT) 2 , 

Hamiltonian 

(2.14) 

J-1 V= 1 —12.1372± 10.3789^+ (^TT)2 

2ma2L \b. 

(2.15) 

so that the branch points recede to plus infinity along 
a path parallel to the positive real axis. The trajectory 
of this branch point is shown in Fig. 1 as a function of b. 

Katz7 has illuminated the nature of these branch 
points. They result from the degeneracy of the ground 
state and the first excited state. If we cut the complex 
plane from these points to infinity, we have by (2.4) and 
(2.5) a single-valued function of V with no other branch 
points. However, if we join the two branch points by a 
cut (encircling both of them can easily be shown to 
leave the function unchanged), we find some of the 
additional branch points discussed by Katz where the 
ground state is degenerate with the second, third, • • • 
excited states. 

For the higher excited states (angular momentum = 0) 
the analysis is similar. For instance, for the case b/a2>l 
we need the nth root for / in (2.8) for the nth excited 
state instead of the first root which we used for the first 
state. Hence, (2.10) becomes, approximately, 

n' w r /ay 
vn~— -(i+i)v+ - {(n-j)v 

2ma2L \b/ 

-llHMn-j))J±i(n-j)7rH4T(n-j))}\ 

i = 0 , 1, . - . , n - l , (2.16) 

as long as the correction to — 0 ' + i ) V is small. There 
are now n pairs of branch points for the nth state. We 
previously found one pair for the ground state, or first 
state. 

To return to the many-body problem, we shall show 
that there is at least one (pair) of branch points which 
tends to the origin of the V plane as N tends to infinity 
by traversing two paths in the complex plane to a 
certain point. The paths we take will never pass further 
from the origin than a distance which tends to zero as N 
tends to infinity. They will yield two different values 
of E(V) for the same V, hence imply the existence of at 
least one branch point. The occurrence of a branch 
point stops the convergence of the Taylor series at 
that point. Let us consider a system defined by the 

N pi2 N 

#=£—+'£v(\r i-r i\), 
i=i 2m t<j 

(2.17) 

which is enclosed in a large box of volume £2, such that 
p=N/tt. The function v{r) is taken to be a square well 
of range a and strength V. 

Let us follow the energy as a function of V as V 
becomes progressively more attractive. We study the 
case of Fermi-Dirac statistics. The result here is well 
known.8 The system collapses rapidly to a size of 
order a. The kinetic energy of the highest state (n oc N1/d) 
is proportional8 to A^2/3. However, the potential energy 
of each particle is approximately NV as each particle 
feels the attraction of every other particle. Thus, for 
the collapsed state, we have for each particle a problem 
equivalent to one particle in a box with a square-well 
potential of strength V = NV. The parameter b is related 
to the total volume 0 and, hence, is proportional to 
(N/p)l/s. I t becomes very large as N goes to infinity. If 
we go to an attractive potential of strength V propor­
tional to Ar~[1/(3+e)], then (for N very large) the poten­
tial energy per particle [proportional to i\r (2+e) / (3+€)] 
will dominate the kinetic energy. Also, we will be to the 
left of all the branch points in the complex V plane for 
the first n = Nlls states. The analysis equivalent to that 
given above for angular-momentum states different 
from zero is similar, and for b/a^>\ the branch points 
will close on the axis at the various appropriate binding 
energies. Returning to zero angular momentum, if we 
now approximate tanh# in (2.2) by x—n^^iri for x near 
nmaxiri, we may continue on V around the arc of a circle 
to the positive real axis, as long as we are careful to 
avoid points for which 

cos(^2) = 0 or 2/1/2-sin(2/1/2) = 0, (2.18) 

which can easily be done. At this point, the collapsed 
state has been continued to the positive real axis and, 
in terms of the energy per article, is of the order of 
Af(2+e)/(3+e\ As the potential energy per particle is still 
NV, the wave function must still be concentrated in a 
sphere of size a. However, if we continue from the origin 
straight out the positive real axis, then we know, 
physically, that as V tends to infinity we obtain the 
hard-core, Fermi gas. The energy per particle is bounded 
for all Vy 0 < F < c o , at least for densities small com­
pared to closest packing of hard spheres. Thus, we 
conclude that we must have encircled at least one 
branch point. As our above argument is valid for any 
€>0, E(V) must have a radius of convergence of not 
more than the order of N~1/s. Hence, in the limit as N 
tends to infinity the radius of convergence of E(V) for 
the potential we are considering tends to zero. As 
Goldstone3 has shown formally that each term in the 

7 A. Katz, Nucl. Phys. 29, 353 (1962). 

8 See, for example, J. M. Blatt and V. F. Weisskopf, Theoretical 
Nuclear Physics (John Wiley & Sons, Inc., New York, 1952), 
Chap. 3, Sec. 4. 
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FIG. 2. Hugenholtz vertices with statistical weight factors. 

expansion E(V)/N is finite, we conclude that the 
expansion is a divergent one. 

Our information on the direction in which the closest 
singularities approach the origin and, hence, the angle 
in which the series is asymptotic, is less definite. How­
ever, if we assume that, even though for V of the order 
of —1 we are nowhere near the collapsed state, the 
angular distribution of the correct many-body branch 
points is somewhat like those for the collapsed state 
problem, we get a physically fairly reasonable result. 
Looking, for low density, at the closest state of widest 
angle, we have (nccN1/z, j=0) from (2.16), 

Vn 
2ma2 

( - * 

lnA\ 
(2.19) 

where A is a constant independent of N. From (2.19) it 
is evident that for p small compared to the density for 
the closest packing of hard spheres, that the branch 
points for V=V/N approach the axis from the negative 
real direction. If the second and third terms of (2.19) 
are not small compared to the first, then (2.19) is not 
valid and no conclusions can be drawn from it. Hence, 
at least for p small enough, we find that E(V)/N is 
asymptotic in the cut plane 

-7r<argF<7r. (2.20) 

This does not, of course, necessarily mean E{V) is 
analytic in the cut plane. 

The case of Bose-Einstein statistics is similar to the 
above. However, in the collapsed state all particles 
occupy the lowest state so that we find the radius of 
convergence to be only of order V=N~K This result 

may be true for Fermi-Dirac statistics as well but we 
have proved only the less restrictive V=N~1/3 instead. 

We wish to point out that an argument similar to the 
above has been advanced previously for the case of 
quantum electrodynamics by Dyson.9 He was able to 
show by considering e2 negative that a phenomenon 
similar to the collapsed state occurs where electrons and 
positrons gather into separate regions of space and form 
a state of energy arbitrarily lower than that of the 
vacuum. 

3. THE RATE OF DIVERGENCE OF THE 
PERTURBATION SERIES 

In this section we shall enumerate the terms con­
tributing to the nth order of perturbation theory and 
bound each term for Fermi-Dirac, spinless particles. We 
shall then estimate the rate of divergence of the 
perturbation series. I t could diverge more slowly than 
our estimates, due to cancellation between terms, but, 
as we have shown in the previous section, it cannot 
converge. In order to enumerate all the terms it is 
convenient to use a diagram representation of each 
term. We adopt the one introduced by Hugenholtz.10 

The procedure for writing down terms of the perturba­
tion series from diagrams is outlined by him. In the 
expansion for the energy, all connected diagrams with 
no external lines, whether or not they violate the Pauli 
exclusion principle,3 are to be included. Each Hugen­
holtz diagram corresponds to several terms in the 
perturbation expansion (or several Goldstone diagrams3 

which are in one-to-one correspondence with perturba­
tion-theory terms). The number is given by Hugenholtz 
as 4w/2m, where n is the number of vertices and m is the 
number of pairs of equivalent lines. A pair of equivalent 
lines is two lines joining the same two vertices in the 
same direction. According to Hugenholtz's convention, 
an occupied state is represented by a line directed to the 
left, and a hole by a line directed to the right. The 
occurrence of an action by the potential is represented 
by a vertex. The potential function v(k) introduced by 
Hugenholtz is, for a square well of range a and strength 
V, 

v(k)= (4wV/k%sm(ak)-ak cos (a*)] . (3.1) 

In order to count all diagrams in the nth order we will 
give a counting rule which is equivalent, but more 
convenient for this purpose, to Hugenholtz's.10 We 
assign a statistical weight factor to each type of vertex 

n 

F 
G 
H 

1 

2 
2 
0.5 

TABLE I. Enumeration of diagrams. 

2 

4 
4 
0.25 

3 

84 
84 

1.31 

4 

4324 
4900 

16.9 

5 

335 348 
454 004 

328 

6 

34 775 108 
60 987 716 

8491 

9 F. J. Dyson, Phys. Rev. 85, 631 (1952). 
io N. M. Hugenholtz, Physica 23, 481 (1957). 
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which correctly gives the number of Goldstone diagrams 
which are represented by attaching this vertex on the 
right to a pre-existing Goldstone diagram. In Fig. 2 we 
list all possible vertices, with their weight factors. 
Vertex / is defined as the sum of bubbles on all occupied 
lines plus bubbles on all hole lines. If this is not done, 
diagrams such as shown in Fig. 3 diverge when taken 
separately, but when the sum over diagrams with 
bubbles in all possible positions is taken, this divergence 
is cancelled. We will discuss this point further below. 

Let us introduce a counting function Q(n,N) which 
is equal to the number of Goldstone diagrams of order 
n with N external occupied-state lines (and hole lines) 
on the right and none on the left. The number of terms 
in the nth-order expansion of the energy will be related 
to Q(n,0). If we include vertex F, we will include some 
disconnected diagrams. If we omit vertex F we will 
omit some connected ones. As we shall see, however, it 
is a matter of indifference to the rate of divergence 
whether vertex F is included (except for the first vertex) 
or not. We may now write recursion relations for the 
function Q, The subscript denotes the nature of the last 
vertex. 

QA(n+l,N) = 2^)Q(n,N), 

/N+l\/N+l\ 
QB(n+l,N) = ̂  M i \Q(n,N+l), 

fN-U 
Qc(n+l,N) = 2( W , t f - 1 ) , 

Q»(n+l,N) = ^)^Q(n,N), 

/N+2\/N+2\ 
Qa(n+1,N) = 4{ 2 M % )Q(n,N+2), (3.2) 

QF(n+l, iV) = max[l,e.(n, i V - 2 ) ] , 

/N+l\/N+l\ 
<M»+1,2V) = 4( i J( 2 jQ(n,N+l), 

/N-l\ 
QH(n+l,N) = 2( )Q(n,N-l), 

Qr(n+l,N) = 2^Q(n,N), 

Qj(n+l,N)=(l-5N,0)Q(n,N), 

TABLE II. Path weights. 

Type Total weight factor 
Root mean weight 
factor per vertex 

I. A+D+I 6iV2+2iV+l-5i\r,o 6 (N+1/6)2 
II. C+H---B+G 16N(N-l)(N+2)2 4 (W+3/4)2 
III. C+H--C+H---E 16(iV-l)(A0(2V+3)2(2V+4)2 2.5(N+13/6)2 
IV. F - - - J5+G-- -B+G 16(iV+3)2(iV+l)32V 2.5(iV +3/2)2 
V. F---E (N +4)2 (]V +3)2 (N +7/2)2 

FIG. 3. A divergent 
bubble diagram. 

where ( , 1 are the standard binomial coefficients, which, 

of course, equal the number of ways of taking a things, 
6 at a time. Summing the terms in (3.2) we obtain the 
relation 

Q(n+l,N) = Z(l-dN-2to)Q(n,N-2) 

+4(N-l)Q(n,N-l) 

+ (6N2-2N+l-8N,oMn,N) 

+4(N+l)2NQ(n,N+l) 

+ (N+2Y(N+iyQ(n,N+2)l, n>\ (3.3) 

e ( M O = o , N^2, g ( i , 2 ) = i . 

The Kronecker delta 5jy--2,o arises from the exclusion of 
disconnected diagrams by not allowing vertex F to 
follow a state with zero lines on the right. If we drop 
the Q(n,N—2) term, we eliminate vertex F altogether 
(except for the first vertex). We illustrate in Table I the 
number of Goldstone diagrams and a lower bound to 
the number of Hugenholtz diagrams. This bound is 
obtained by noting that no more than 4n Goldstone 
diagrams may correspond to one Hugenholtz diagram. 
Row F is the number of Goldstone diagrams with no 
external lines that have only one (the first except in 
first order) F vertex. This number is less than or equal 
to the total number of connected diagrams. Row G is 
the number of Goldstone diagrams with no external 
lines which never return to the ground state. This 
number is greater than or equal to the total number of 
connected diagrams. Row H is a lower bound to the 
number of Hugenholtz diagrams. I t is Row F over 4n . 
In the first four orders it varies from about J to \ the 
actual number. In order to estimate the number of 
diagrams for large n, we use the fact that there are the 
same number of lines entering on the left as leaving on 
the right; hence, for instance, if TV is changed by + 1 at 
one vertex in the diagram, it must be lowered at some 
subsequent vertex. In Table I I we give several possible 
types of raising and lowering combinations, together 
with their weight factors and the root mean factor per 
vertex. The weight factor assumes N lines of each type 
entering from the left. The root mean weight factors 
are approximate. In the type designation in Table I I 
the plus sign is used to lump all contributions of the 
designated types of vertex together and • • • indicates 
other parts of the diagram may intervene before the 
indicated level reduction occurs. We can see from 
Table I I that the most heavily weighted paths in (n,N) 
space will be the ones in which the largest values of N 
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FIG. 4. A successive 
hole, filled-state inter­
action diagram. 

are reached. If type V combinations are used, a value 
of N=n can be reached and, hence, we get 

weight (FFF • • • EEE)~4: £)' (3.4) 

Similarly, using types II , I I I , or IV we get again (3.4). 
Except for I I I and IV the 4W becomes (4.5)n. The total 
number of allowed paths in (n,N) space is less than J the 
number of random walks in one dimension which return 
to the origin in n steps, where steps of length 0, 1, and 2 
are allowed. This is easily computed11 as 

1 f 
JP(0,») = — / 

4 T T 7 0 

1 rzir / s m f k\ 

4:w J u \ s i n | & / 

le-2ik+e~ik+l+e+ik+e2ik~]nd 

1 r2ir / s i n f ife\ n 

dk, (3.5) 

which, by the method of steepest descents12 is, for large 
n, approximately 5n(16wn)~1/2. Thus, the total number 
of diagrams can increase no faster than 

(23)»[(»/2) !]4« (1.5)»(2»!). (3.6) 

On the other hand, using only the most heavily weighted 
path with type I I contributions only, we have at least 
as many as (3.4). Hence, the number of diagrams is 
asymptotically something like ABn(2nl). According to 
the data in Table I, , 4 -0 .12 , £ « 1 . 0 . 

Having enumerated the diagrams, the next step is to 
bound each individual diagram. There are basically two 
possible types of divergences which the diagrams could 
possess. The first would be singularity for a finite value 
of the internal momenta, and the second a divergence 
for an infinite value of the internal momenta. We will 
examine now the first type of situation. For the many-
body perturbation-theory diagrams, the action of the 
exclusion principle always prevents any divergence 
from a finite internal momentum plane. We will 
illustrate this situation for a case in which there is 
apparently an arbitrarily strong singularity. The dia­
gram is given in Fig. 4. The contribution to E/N of the 

11 See, for instance, E. Montroll, The Theory of Neutral and 
Ionized Gas, edited by C. deWitt (John Wiley & Sons, Inc., 
New York, 1960), p. 110. 

12 See, for instance, H. Jeffreys and B. S. Jeffreys, Methods of 
Mathematical Physics (Cambridge University Press, New York, 
1950), Chap. 17. 

direct (no exchanges) term is 

( - 1 ) " - 1 / 3 

( 2T> 

n—i / 

X 

^3<zII (ddwii) 

[»(?)]»/n| q - ( q + m ; - m i ) 
mJ 

(3.7) 

|m i—q|>&F, | m H - q | > * F , Ki<n, 

\nii\<kF, l<i<n, 

where we mention that we are treating the case without 
spin or isotopic spin, and UF is the magnitude of the 
wave vector at the top of the Fermi sea. Apparently 
(3.7) diverges like q2~n as |q | goes to zero. However, 
following Hugenholtz,13 if we neglect quadratic terms 
in q we may convert (3.7) into 

/ m\n~l r00 r1 

3V 2) ^~2nkpn~2 dqq*[y(q)~]n\ ••• 

r1 n ^diM 
/ M i ^ i I I -

JO i==2 (fJLi+Hl) 
(3.8) 

where the m are cosines of the angles between m^ and q 
(except jni= — cosine). We see from (3.8) that the 
integrand actually vanishes at # = 0 instead of becoming 
singular. The problem of a vanishing denominator 
(/zi=/^==0) does not cause any difficulty for, doing the 
integrals over fXi, i=2, • • •, n, we obtain 

/ m\n~l r00 

X M i ^ i [ l ™ M i l n ( l + M i ) + M i l n M i ] w . (3.9) 
./o 

Since the nth. root of the integrand for m is bounded, 
the entire term increases only geometrically as n goes 
to infinity. 

As mentioned earlier, Fig. 3 may by itself diverge. We 
will now consider the bubble diagrams in more detail. 
First, the contribution of a bubble on a hole line has 
the opposite sign from a bubble on a filled-state line. 
This change of sign follows because they arise from the 
subtraction terms in the Rayleigh-Schrodinger pertur­
bation theory.14 That the bubble on hole lines cannot 
arise directly follows immediately from the second 
quantization formulation,10 as it involves emptying a 
state twice. The effect of a bubble on a filled-state line of 

13 N. M. Hugenholtz, Physica 23, 533 (1957), especially Eq. 
14 See, for example, K. A. Brueckner, The Many Body Problem, 

edited by C. de Witt (John Wiley & Sons, Inc., New York, 1959), 
p. 65 et seq. 
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FIG. 5. Labeled 
"free" momentum-
originating vertices. 

m+q 

q 

• T ^ , P j +P2-P3 

momentum k is to insert a vertex contribution of 

ddm[v (0)-v(k+m)li, \m\<kF (3.10) 

and raise the power of the denominator by unity. On a 
hole line, there is the same contribution as (3.10) except 
that the over-all sign is now minus and k now stands for 
the momentum of the unoccupied state. Hence, sum­
ming over bubbles on all lines, we obtain for the contri­
bution of a / vertex a factor in the integrand of 

(2T)' / \m\<kf 

X E Ct»(M-m)-t>(mrl-m)]/ E ( t t - n t f ) , (3.11) 

where j is the number of holes or filled-state lines pre­
sent, k4 the filled-state momenta, and m* the hole 
momenta. The v(0) terms have cancelled as the number 
of holes must equal the number of filled-state lines in 
this type of diagram. Since v depends only on the mag­
nitude of its argument, it follows easily that the integrals 
of v appearing in (3.11) depend only on |k$-| and |m»-|. 
Furthermore, since ki2>kF

2>mi2, the denominator may 
vanish only when all the momenta lie in the Fermi 
surface. But, for that case the numerator also clearly 
vanishes. Hence, the contribution of a summed bubble 
vertex is bounded by a quantity related to the first 
derivative of the integral of v appearing in (3.11). If the 
bubble diagrams are not summed, singularities may 
arise from, for instance, the v(0) terms.15 

We have seen, from analyzing the different types of 
apparent singularities that may occur for finite internal 
momenta, that they do not contribute any additional 
divergence to the perturbation series. 

In order to study the possible divergence of a diagram 
at infinite values of the internal momenta, we will 
consider each type of vertex which is allowed by the 
Pauli exclusion principle to originate a momentum 
which may be infinite. These vertices are A, C, and F. 
First, if we label vertex F as shown in Fig. 5, then the 
vertex contributes v(q) and the denominator following 
it has a non-negative part plus 2q- (q+m—n). As v(q) 

15 For a more general discussion of the cancellation of diver­
gences for finite internal momenta, see V. V. Tolmachev, Dokl. 
Akad. Nauk S.S.S.R. 141, 582 (1961) [translation: Soviet 
Phys— Dokl. 6, 976 (1962)]. 

goes to zero like q~2, and we are doing only three-
dimensional integrals, this remark suffices to show that 
the integral over the "free" momenta q originated at F 
vertices must converge at infinity at least like dq/q2. If 
we label a C vertex as shown in Fig. 5, then the vertex 
contributes again a factor of v(q). If we consider only 
the new line m+q and hole m, then the next denominator 
is something non-negative plus g2+2m-q. Again the 
integral over q converges at infinity at least like dq/q2. 
The analysis of A is slightly more complex. Pick any 
hole m, then we may write 

P i=m+qi , p 3=m+q 3 . (3.12) 

In this notation q3 will be the "free" momentum created 
at this vertex. The vertex will contribute a factor 
z>(q3— qi) and the next denominator to the right will be 
something non-negative plus £3

2+2q3-m. As we have 
shown above, the exclusion principle keeps this quantity 
from vanishing in an unfortunate manner for q3 and m 
finite, so we may replace the qi in the volume element 
divided by it with a constant for the purpose of bound­
ing the integral over q3. Our task is thus reduced to 
bounding 

max / dqzd£l%\v(q$— qi)| , (3.13) 
qi Jo 

where 123 is the solid angle for q3. A bound for (3.13) 
follows easily when we note that 

\v(x)\<A/(l+Bx2) (3.14) 

for a square well. 
It now follows easily that, since there are no diver­

gences on any of the integrations and there are at most 
n+1 internal 3-dimensional momenta in a diagram of 
nth order, any ^th-order Goldstone diagram contributes 
at most 

M1(M2)
n, (3.15) 

where M\ and M2 are determinable constants. To show 
this we may break a general diagram of the form 

/ 

i i 
Vi—vr • •»„_! vndr (3.16) 

down into a number of factors depending on (essen­
tially) single variables only, in the general manner 
indicated above. Then each single integration may be 
bounded. We get something like 

n-l 

max[K | ] I I J \DA\J J 
dmdn, (3.17) 

where m and n are the two holes which occur in every 
diagram. Hence, we have shown so far that the 
perturbation series diverges at worst like 

Mz(2n)\(M4)
n. (3.18) 

file:///dA/j
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We shall now show that (3.18) can be greatly im­
proved upon. Although the argument is not rigorous, 
we believe that it makes the result quite plausible. I t is 
based on the observation that when many excited states 
are filled, the denominators are, on the average, much 
larger than when very few excited states are present. If 
the range of the various internal momenta is determined 
by the convergence properties of the potentials or the 
exclusion principle alone, and not by the energy de­
nominators which depend on N, then we may think of 
each hole, filled-state line pair as contributing an 
average excitation energy. When there are N of these 
pairs, the denominator will be, on the average, TV times 
as large. 

We must now determine when the ranges are so 
restricted. Clearly, the energy range of every hole 
momentum is completely restricted by the Pauli exclu­
sion principle. I t therefore remains to check the "free" 
momenta. We can do this by the familiar procedure of 
counting powers at infinity of each "free" momentum q. 
To facilitate this power counting, we may compute 
from (3.1) 

/ 

+1 4wVa 
. » ( |q i—q 2 | ) d f f i2= 

l qiq2 

XZjo(a(q1+q2))-jo(a(q1-q2))-]J (3.19) 

where xi2 is the cosine of the angle between qi and q2. 
As the quantity in square brackets in (3.19) is bounded 
for all q± and q2 by 2, we see that a vertex operator 
involving two "free" momenta may simply be divided 
equally between them, i.e., one inverse power for each 
one. Referring to the above analysis of the "free" 
momentum-creating vertices A, C, and F, we see (also 
let P2 = r— qi, with r possibly "free" for vertex^!) that 
they contribute factors of A, q~~l; C, q~2; and F, q~2. A 
similar analysis of the vertices which may terminate a 
"free" momentum shows that they contributed factors 
of A, q~l] B, q~l\ and E} q~2, where q is the one "free" 
momentum which can be annihilated at the vertex. To 
be sure of not overlapping in our counting, we will 
consider only the originating and the terminating 
vertex for each "free" momentum. If we consider all 9 
types of pairs of vertices, we find that all but A A and 
AB have at least 3 inverse powers of q, and hence deter­
mine the range of their respective "free" momentum. 
The other two pairs have only a factor of q~2 and so the 
range of q is possibly controlled by the energy de­
nominators. By considering the integral16 

/ . 

dx 

o (A+x2Y 
M 

r(n-i) 
l /2_ (3.20) 

we see that the approximate effect of an integration 
determined by the energy denominator is to multiply 

16 W. Grobner and N. Hofreiter, Integraltajel, Zweiter Teil, 
Bestimmte Integrate (Springer-Verlag, Berlin, 1958), No. 131.7. 

the magnitude of the result by (A)1/2. When there are 
several denominators involved, the integration will 
effect the multiplication by (A)1/2, where A is some kind 
of a mean A. If an A vertex occurs when there are N 
excited states, then we expect that the "free" momen­
tum created will be annihilated on the average when 
there are of the order of N excited states present also. 
We also compute roughly the probability (fraction of 
diagrams) of the pairs AA, AB, and AE occurring. 
These are the only pairs which contain A as the first 
member. The number of such pairs is 

AA- 0-i . 

AB = ( Y "W, (3.21) 

^-CX)-™"-1'' 
and their relative probability will be 

AA = l/[$N(N+l)+ll, 

AB=N/[iN(N+l)+ll, 

AE=±N(N-1)/HN(N+1)+11-

(3.22) 

For vertex AE the contribution will be 1/N at each 
denominator times the number of diagrams. For A A 
and AB we must take only 1/(N)1/2 for first denomin­
ator to the right of first A vertex. Thus, averaging over 
the possible final vertices, we get a factor of 

[K^"l)+(^+l)/(^)1 / 2]/C^(^+l)+l] (3.23) 
for the first denominator to the right of A. This factor, 
however, tends to 1/N as N tends to infinity. The 
algebraic identity given by Hugenholtz10 

permutation 

= (? i?2- - -U- 1 (3.24) 

is also suggestive in this regard as there are exactly n! 
permutations. Hence, we may divide the weight factors 
given in (3.2) by N and multiply by some constant A in 
order to calculate the total contributions. When we 
calculate the contribution in this way, an analysis 
similar to that in (3.3) to (3.6) and Table I I shows us 
that the nth order in perturbation theory diverges no 
faster than 

Tnl(A)n, (3.25) 

where A is a multiple of A. 
The so-called ladder insertions (several successive A 

vertices) form a special case. Integration over each 
"free" momentum (in the simple ladder diagram) in 
the region near the Fermi surface contributes a factor 
proportional to In Q | m + n | + k p - m - n | ) . For r 
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successive such factors, the final integration over the 
hole momenta m and n gives a result proportional to n!. 
However, there are only 2r of these terms, so they 
contribute terms at most of order r\. When a ladder 
insertion occurs with m hole lines present, its contribu­
tion is cut to the order of (r l)/mr+1(r^>m) as can be seen 
from the integral f0- • • f01[m dxt ln r( X > x%). The rest 
of an ^th-order diagram will contribute like a diagram 
of order n—r, or as we have seen (n—r)l Hence, 
summing over all partitions we get 2Z r\{n—r)!, which 
is again of order n!. Thus, although the ladder diagrams 
contribute more than their proportional amount, they 
will not increase the rate of divergence of the series as 
a whole. Summing out the ladder insertions with a K 
matrix will not render the whole series convergent, as 
can be seen by counting up the remaining contributions. 

We believe that, although for certain potentials (such 
as S-state interaction only, which does not lead to a col­
lapsed state and, hence, yields a convergent series) can­
cellation between terms may occur so as to decrease the 
rate of divergence, there is not a better general bound 
than (3.25). The derivation of Eq. (3.25) did not depend 
strongly on the properties of the potential, but only on 
\v{q)\ being bounded and going to zero like q~2 as q 
went to infinity. According to recent work of J. L. 
Gammel17 the terms selected by the Bardeen-Cooper-
Schrieffer theory of superconductivity are all present 
in the perturbation theory for an A^-body system where 
the limit N —> °o is not taken. They are not of order 1, 
but higher order in 1/N. The sum of these terms gives 
a contribution to the energy (for V small) of18 

Ae-Biv (3.26) 

in the limit as N goes to infinity. Since we have shown 
in the previous section that the radius of convergence 
tends to zero as N tends to infinity, probably like N~y 

with | < 7 < 1 , let us guess that (3.26) is, for N finite, 
of a form like 

Aexp{-B/tV+CN~y^}. (3.27) 

I t now follows from examining the derivatives at F = 0 , 
that as N tends to infinity, the nth derivative is of the 
order of (n) ! for some value of N. Hence, these terms 
alone would, in general, prevent one from obtaining a 
better bound than (3.25). 

4. SUMMABILITY OF THE PERTURBATION SERIES 

Let us now consider the problem of assigning a 
meaning to the asymptotic perturbation-series expan­
sion for the infinitely-many-body problem. According 

17 J. L. Gammel (private communication). We wish to thank 
this author for making this information available to us prior to 
publication. 

18 See, for example, L. N. Cooper, Lecture Notes on the Many-
Body Problem from the First Bergen International School of Physics, 
1961, edited by C. Fronsdal (W. A. Benjamin, Inc., New York, 
1962), p. 49. 

to Hardy,19 Carleman has proved that a necessary and 
sufficient condition for 

\g(z)\<OLnn\z\n, (\z\<r0<oo)J | a r ez |< ib i (4.1) 

to imply g(z) — 0, is that ]T an~
l diverge (for suitably 

regular a). If the many-body perturbation is asymptotic 
in the angular sector |argF|<^7r , then this theorem 
means, since (nl)1/nccn implies ^ an~l diverges, that 
there is at most one function which is regular for real, 
positive V and asymptotically equal to the perturbation 
series. That the desired solution, for a repulsive square-
well potential, is regular follows directly from a 
perturbation-theory calculation of the first derivative 
for any real, positive V. We shall now investigate the 
determination of this function. 

Let the energy per particle in the A^-body problem 
with a square-well interaction be 

EN(V)=j:NenV« (4.2) 

This series has a radius of convergence of the order of 
N~y, J < 7 < 1 , as was shown in Sec. 2, and, hence, by 
analytic continuation defines EN(V) everywhere except 
at singular points or on branch cuts. This analytic 
continuation is conveniently given by Mittag-Leffier's 
method.19 Let 

«> NenV
n 

EN(V,d)=T,- - . (4.3) 
n=oT(dn+l) 

For every 5>0, EN(V,5) is an entire function of V as 
EN(V) is analytic at 7 = 0 . Also, as shown by Hardy,19 

Theorem 135, 

limEN(V,5) = EN(V) (4.4) 
5->0 

uniformly in any closed and bounded region in the 
Mittag-Leffier star of EN(V). The Mittag-Lefiier star 
is defined by cutting the complex V plane from every 
singularity to infinity along rays. As we have pointed 
out above, EN(V) is regular for positive real V. There­
fore, the positive real axis is interior to the Mittag-
LefHer star for every A". The meaning which we wish to 
assign to the sum of the perturbation series for infinitely 
many bodies is 

\imEN(V)= lim \imEN(V,5). 
iV—>oo N—>°o 5->0 

(4.5) 

We would like to interchange the order of limits in (4.5) 
to rims_>o lim^oo. For this interchange to be correct, it 
is sufficient to show that lim^oo is uniform for 8 small 
enough. To this end let us introduce 

*«(*)= Z ^ ( l - s ) - 1 , 
=or(i+5^) 

i 7 r5< | a rgs |<7 r . (4.6) 
19 G. H. Hardy, Divergent Series (Oxford University Press, 

New York, 1956), Chap. VIII. 
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FIG. 6. independent integration contour. 

Now for V less than the radius of convergence we have 
by Cauchy's theorem for regular functions of a complex 
variable 

du 
(4.7) 

u 

1 r /V\ a 
EN(V,6) = — <b 4>*l - )EN{U)-

where the contour is a circle about the origin outside V 
and inside the radius of convergence of EN* Again, 
using Cauchy's theorem, we may deform the contour 
until it looks as in Fig. 6, and move V out along the 
positive, real axis. This procedure gives us the analytic 
continuation to any real and positive V. The angle \f/ is 
picked so as to avoid all singularities of EN(u). Let us 
choose 7r5<2^. Then, for \j/< |arg(F/w) | <w, 

1 ,V\ 1 
- * « ( - ) - » 
u \u / u— 

(4.8) 

as V/u tends to infinity. Hence, <t>t{V/u) is bounded on 
the contour of Fig. 6. We may now shrink the circular 
arc part of the contour to the origin. Since EN{U) is 
bounded, Eq. (4.8) holds and the length of the arc goes 
to zero, the contribution from this part of the contour 
goes to zero. Hence, the contour in Fig. 6 may be 
replaced by that in Fig. 7, which is independent of N. 
Now EN(U) tends to a finite limit at every point of this 
contour, and hence it does so uniformly. Therefore, we 
get that EN(V,5) tends uniformly for all ir8<2\{/ to 

E(V,8) = —<fcf>J-\ 
2iriJ \u / 

\E(u)-
du 

(4.9) 

where the contour is that of Fig. 7. By the properties 
of <l>s(x)9 E(Vy8) tends to E(V) uniformly for V in any 
closed and bounded set interior to the contour. Thus, 

E ( F ) = lim£(F,5) = lim \im EN(V,8). 
5-K) 5->0 iV->oo 

(4.10) 

Also E(V,8) is an analytic function of 8 for 0<8<2\p/w. 
There is a uniform bound in N of the type (3.25) for 

the A^-body perturbation series, in addition to the ^th 
coefficient being bounded by 

This result can be seen by remembering that the 
perturbation expansion for the A"-body problem in a 
box can be obtained from that for the infinitely-many-
body problem by replacing the integrals with sums with 
certain terms deleted. The replacement of integrals by 
sums does not change the order of magnitude of a 
convergent integral. The deletions have little effect 
until n (the order) is of the order of magnitude of N, 
where their effect is to reduce the rate of increase from 
that given by Eq. (3.25) to that given by Eq. (4.11). 

Because of the uniform bound like (3.25), we see that 
the series for EN(V,8) converges absolutely and uni­
formly for all V if 8> 1. If \p is greater than -Jx, then we 
have EN(V,8) an analytic function of 8 for all 5>0 , and 
we can analytically continue it from 8> 1 where we may 
calculate directly from its series expansion to 8=0 where 
that expansion diverges. 

As we saw in Sec. 2, if the density is sufficiently low 
(small compared to the jamming density for hard 
spheres), we may reasonably expect to exclude all 
singular points from the right-half, complex V plane, 
including the imaginary axis. If this situation prevails, 
we may introduce 

1 re+ic0 dw 
hN(t,8) = — ; / ewtEN(w-\8)— 

2iri J e-iao w 
(4.12) 

00 Nen 

= E n=on\T(l+8n) 

Since EN(V,8) approximately equals19 EN(V) as V-^oo 
in |arg z\ <^(p) — ̂ TT8, where \(/(p) is now the minimum 
angle made by a line joining the origin and a singularity 
of EN(V), and the positive real axis, and since from 
Sec. 2 we expect, for low enough density, the branch 
of EN{V) obtained by continuation for R e ( F ) > 0 to 
tend to a finite limit, we see that the integral definition 
(4.12) implies AJV(^,5) is bounded by Me€t for any e>0. 
We take €>0 to miss the pole at w = 0. As long as 
^(p)>7r/2, the EN(W~1,8)7 as we have seen above, tend 

>oo to E(w~x
y8) on the imaginary 

(4.12) converges absolutely 
•°°] , hN(t,8) also tends uniformly 
-»oo. From the series expansion 

uniformly in A" as Af -
axis, and since 
^£(w-1,5) oc w~l as w-
to a limit h (t,8) as Af-
(4.12) we see that h(t,8) is entire. Hence we can, from 

A(BNv)n. (4.11) FIG. 7. iV-independent integration contour. 
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the series expansion, directly compute by the Laplace 
transform theorems,20 

UmEN(V,8)=\im f <r*hN(ytfi)dt, 
J 0 

E(V,8) = f <r*h(Vt,8)dt. 
Jo 

(4.13) 

Our bound for h(Vt,8) insures that (4.13) converges 
absolutely for any finite V and uniformly in 8, as 8 —» 0. 
We may, therefore, interchange integration and the 
limit 8 —» 0. We recognize that taking the limit 8 —» 0 
applied to h(Vt,8) merely effects the analytic continua­
tion to all points in the Mittag-LefHer star. We will 
therefore take the limit as 8 —» 0 and mean by h(x) the 
analytic continuation of its power-series definition. 
Hence, if $(p)>iw, then 

h(x) = X) enx
n/(nl), 

E(V) = f e-lh{tV)dt, 
Jo 

(4.14) 

which is the Borel sum19 of the energy series. That 
^ (p )> Jx is necessary follows by letting r=tV in (4.14). 
This change of variables shows that E(V) may be 
continued (since V may be arbitrarily large when real) 
throughout the whole region R e ( F ) > 0 . E(V) for V 
purely imaginary can be defined by taking the limit 
a s R e ( F ) - > 0 + 

I t should be remarked that, for more general poten­
tials, Carleman's theorem, Eq. (4.1), tells us that the 
condition for determining a unique sum is that the 
closed right half-plane be free of singularities, in the 
neighborhood of the origin rather than the whole right 
half-plane. We obtained the whole right half-plane for 
the repulsive square-well potential because of the 
behavior of E(V) in the neighborhood of F = + °o. In 
the case of more general potentials, Eq. (4.14) will sum 
E(V) only in the so-called "Borel polygon of summa-
bility."19 This polygon will not include all real, positive 
V if there are singularities in the open right half-plane. 
However, as long as it sums the series in the neighbor­
hood of at least one point, it is sufficient, by analytic 
continuation, to determine, at least in principle, the 
function everywhere except at singularities, on branch 
cuts, or beyond natural barriers. I t should also be noted 
that even for the square-well potential, Eq. (4.14) 
without the variable change may not converge in the 
whole right half-plane, but will for all real and positive 
V. 

20 See, for example, B. Van der Pol and H. Bremmer, Operational 
Calculus Based on the Two-Sided Laplace Integral (Cambridge 
University Press, New York, 1959). 

In the limit of vanishing p we can work out explicitly 
the various functions in (4.14). According to Huang 
and Yang21 the energy per particle to first order in p is 

EMa2 

• = 1 

tanh[(FMa2 /^2)1 / 2] l (kFa) 

(VMat/h2)1'2 

Solving (4.12) for h, we obtain 

(kFaf\ 

(3T) 
(4.15) 

h(x) = -
3TT 

1 E ( 2 » + l ) -

X exp{ - 4Ma 2x/[_h2 (2n+ 1)V2]} (4.16) 

which goes to a constant (without oscillation) as x —» oo. 
In the limit as p —̂  0 we have a "large" convergent part, 
Eq. (4.15), plus a "small" asymptotic part. Hence, one 
would expect that approximations based on summing a 
subsequence of diagrams (for instance, Brueckner's2,14) 
would form reasonable approximations for very low 
density, but will very likely begin to fail as the density 
increases. Also, such an approximation may be valid for 
larger density and weak potentials. Although summing 
a subsequence of diagrams and expanding in terms of, 
say, Brueckner's2,14 K matrix does not convert a di­
vergent series into a convergent one, if the density is 
very low or K is very weak, a serviceable approximation 
may perhaps be obtained by taking only low order in K. 

We see that (4.14) correctly gives the energy per 
particle for the infmitely-many-body problem so long as 
the closed right half-plane (except the origin) is free of 
singularities. As singularities move into the right half-
plane, we no longer obtain the correct energy. What 
happens is that in going along the imaginary axis in 
(4.12) we get on the wrong branch of EN- The energy 
obtained in (4.14) will, however, by the variational 
principle, always be an upper bound to the true energy, 
since the corresponding wave function can be obtained 
by performing a Borel summation on the wave matrix.14 

This result can be shown by use of Carleman's theorem 
[Eq. (4.1)] and a modified version of Goldstone's3 

proof that the perturbation expansion satisfies the 
Schrodinger equation. 

An example of what can happen (for a different 
potential) when the condition yp{p)>^ir is violated is 
afforded by the BCS theory of superconductivity.18 

Even though, as Katz7 has shown, the singularities of 
the iV-body problem are branch points at which the 
energy is continuous, in the limit &s N —><*> they can 
conspire to give an essential singularity of the form18 

EQ(V) = Ae-B^v. 

The corresponding h(x) is 

h(x) = 0, x<B 
— A, x>B, 

(4.17) 

(4.18) 

1 K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957). 
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which is not an analytic function of x. I t is perhaps 
illuminating to consider how this circumstance could 
have arisen, since (4.12) and (4.13) with subscripts N 
are exact. Let us consider 

- NfnVn 

M M ) = Z — -, (4-19) 
«=or(i+k) 

where the JV/» are the series-expansion coefficients of 
(3.27). When 5<<Cl, JN{V,S) is a close approximation 
to (3.27). When 5 = 1 , h(x) given in (4.18) is the limit 
as N —»oo of / J V ( F , 1 ) . This function still bears a slight 
resemblance to (3.27). When 5 > 1 , one can easily show 
that /N(V>8) tends to a limit for every value of V which 
can be as closely approximated by the series (4.19) with 
fn replacing NJU as one pleases. Since all fn = 0, this 
means fN(V,8) - » 0 for all V if <5> 1. Yet 

lim lim / r ( E \dt 
AT-** 5 ^ o JQ { w==0 T(l+n8)T(l+n5') J 

= limi4 exv[-B/{V+CN-y)~] = Ae~Blv. (4.20) 
N—>oo 

What happens is that JN(V,8) has a large peak at a 
distance from the origin of order Ny so, although 
/iv(F,6)—>0, the integral does not. Hence, when the 
series is not asymptotic in | arg z \ < %w, the interchange 
of the integration and the limit as N goes to infinity in 
(4.13) is not valid. 

Physically, where do these effects arise? Since, for 
low enough density, we solve correctly the repulsive 
square-well problem, they do not always arise as a 
result of the solution procedures alone. The effects come 
from situations where the effect on every power of V 
tends to zero as N tends to infinity, but not uniformly 
so. Consequently, they do not involve any finite number 
of excited states. Significant effects occur when the 
number of excited states is of the order of N7'. This sort 
of phenomena is usually related to the onset of long-
range order in the physical system. We feel that the 
perturbation procedures described herein are applicable 
to many-body systems, so long as there is no condensa­
tion, collapsed state ( F < 0 ) , superconductivity, super­
fluidity, phase transition, etc. For the infinitely repulsive, 
square-well potential problem there is probably an 
order-disorder transition22 to a crystalline structure at a 
density somewhat below the jamming density for 
randomly arranged spheres.23 This transition probably 
sets the limit of validity for the procedure given in 
(4.14), although one may continue to calculate a 
metastable state beyond that point. 
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